Betatron
Z Wikipedii
Betatron - akcelerator indukcyjny, rodzaj akceleratora cyklicznego, służący do przyspieszania elektronów.
Pierwszy betatron zbudował Donals William Kerst w 1940 roku - składał się z pierścieniowej komory próżniowej umieszczonej między nabiegunnikami elektromagnesu.
Elektromagnes zasilany jest ze źródła prądu zmiennego. W momencie gdy pole magnetyczne ma małe natężenie do komory wstrzykiwane są wstępnie przyspieszone elektrony, których tor jest zakrzywiany przez pole magnetyczne. W komorze zostają tylko te elektrony które mają prędkość o takiej wartości, że promień ich obiegu jest równy promieniowi komory. Pole magnetyczne wzrasta, w wyniku zjawiska indukcja elektromagnetyczna wzrastajace pole wytwarza wirowe pole elektryczne, które przyspiesza elektrony. Jednocześnie rosnące pole magnetyczne utrzymuje elektrony poruszające się z coraz większą prędkością na orbicie o powoli rosnącym promieniu.
Gdy pole magnetyczne dochodzi do maksymalnej wartości, dodatkowy impuls kieruje elektrony na zewnątrz lub do wewnątrz gdzie umieszczony jest wylot lub tarcza. W czasie cyklu przyspieszania elektrony wykonują w akceleratorze setki tysięcy obiegów.
Opisany cykl obejmuje mniej niż 1/4 okresu sinusoidalnie zmiennego napięcia zasilania. W pozostałej części cyklu elektrony nie są przyspieszane. Cykle powtarzają się w takt zmiany prądu zasilającego cewkę elektromagnesu.
Warunkiem utrzymania elektronu na orbicie stabilnej (mieszczącej się w komorze) jest odpowiednie ukształtowanie pola magnetycznego tak by natężenie pola malało przy wzroście promienia. Pole magnetyczne musi spełniać warunek:
gdzie θ0 strumień pola magnetycznego przechodzącego przez powierzchnię ograniczoną orbitą o promieniu r0, H0 natężenie pola magnetycznego na promieniu r0.
Warunek ten uzyskuje się poprzez odpowiednie ukształtowanie biegunów magnesu, stosowanie materiałów magnetycznych o większej przenikalności magnetycznej bliżej środka komory.
Uzyskiwanie energii przez elektrony w betatronach ogranicza promieniowanie elektronów gdyż krążą po orbitach kołowych. Przy dużych prędkościach wypromieniowanie narasta i powoduje wytrącenie elektronów z orbity stabilnej. By zmniejszyć promieniowanie, które jest proporcjonalne do przyspieszenia (tu dośrodkowego) buduje się betatrony o większej średnicy. Przyspieszając cząstki do prędkości porównywalnych z prędkością światła napotyka się wówczas na problem relatywistyczego wzrostu masy przyspieszanej cząstki, który też sprawia, że przyspieszane cząstki wypadają z akceleratora.
Maksymalne uzyskiwane energie sięgają 300 MeV).
Betatron używany jest w przemyśle i w medycynie jako źródło cząstek lub źródło promieniowania, w fizyce stanowi jedynie urządzenie dydaktyczne. W fizyce jądrowej został wyparty przez akceleratory umożliwiające uzyskanie wyższych energii cząstek szczególnie synchrotrony.