Teleportacja kwantowa
Z Wikipedii
Teleportacja kwantowa – w kwantowej teorii informacji technika pozwalająca na przeniesienie stanu kwantowego na dowolną odległość z wykorzystaniem stanu splątanego, co umożliwia transmisję klasycznej informacji.
Teleportacja kwantowa nie pozwala na transport energii, materii lub ludzi na wzór urządzeń występujących w filmach fantastyczno-naukowych. Informacja nie może być ten sposób transmitowana z prędkością nadświetlną. Teleportacja kwantowa jest użyteczna w komunikacji kwantowej oraz podczas obliczeń kwantowych.
Spis treści |
[edytuj] Cel
W artykule zgodnie ze standardowym nazewnictwem stosowanym w informatyce kwantowej przyjęto następujące oznaczenia: dwie cząstki to Alicja (A) i Bob (B), a kubit w ogólności jest superpozycją stanów kwantowych oznaczoną jako i . Równoważnie kubit może być traktowany jako wektor jednostkowy w dwuwymiarowej przestrzeni Hilberta.
Załóżmy że Alicja ma kubit w dowolnym stanie kwantowym, ten stan nie jest znany Alicji, która chce wysłać go do Boba. Jest oczywiste, że Alicja może::
- Fizycznie przetransportować kubit do Boba.
- Nadać informację kwantową do boba, który będzie ją mógł odebrać przez odpowiedni odbiornik.
- Zmierzyć nieznany kubit, do którego ma dostęp, a komunikat z wynikami wysłać do Boba, który nada swojemu kubitowi zgodnie otrzymanymi wynikami i uzyska pożądany stan kwantowy. (Taki hipotetyczny proces nazywany jest klasyczną teleportacją)
Pierwsze rozwiązanie jest nie do przyjęcia, bo stany kwantowe bardzo łato ulegają dekoherencji. Najmniejsze zaburzenie w otoczeniu może całkowicie zniszczyć stan kwantowy podczas transportu.
Drugie i trzecie rozwiązanie stoją w sprzeczności z zasadą nieoznaczoności. Pomiar stanu kantowego zawsze musi być obarczony błędem. Klasyczna teleportacja oraz kopiowanie stanów kwantowych zgodnie z mechaniką kwantową nie są możliwe.
Wydawać by się mogło, że Alicja stoi przed problemem pozornie nie do rozwiązania. Sposób na wybrnięcie z tego kłopotu znaleźli fizycy w roku 1993[1]. Maksymalnie splątane części dwukubitowego stanu kwantowego są dostarczane do Alicji oraz do Boba. Protokół zakłada, że Alicja i Bob lokalnie oddziaływują z swoim kubitem (kubitami). W tym czasie Alicja wysyła dwa lokalne bity do Boba. W końcu okazuje się, że kubit Boba jest w pożądanym przez Alicję stanie.
[edytuj] Protokół teleportacji kwantowej
Protokół teleportacji kwantowej składa się z dwóch etapów:
- Pomiaru
- Odtwarzania.
[edytuj] Pomiar
Załóżmy, że Alicja ma kubit, który chce teleportować do Boba. W ogólności kubit ten można zapisać jako: Indeks O oznacza oryginalny kubit do teleportacji. α oraz β są dwoma podpoziomami stanu kwantowego, który jest ich superpozycją.
Nasz algorytm teleportacji zakłada, że Alicja i Bob mają uprzednio dostęp do maksymalnie splątanego stanu kwantowego, np. do dwóch cząstek w stanie Bella:
- ,
lub innego stanu Bella. Alicja bierze jedną z cząstek z pary, a Bob dostaje drugą. Indeks A i B w stanie splątanym odnoszą się do cząstek Alicji i Boba.
Alicja ma dwie cząstki, czyli cząstkę O, której stan chce teleportować, oraz cząstkę A, która tworzy stan splątany w parze z cząstką B, należącą do Boba. W takim systemie stan wszystkich trzech cząstek jest dany jako:
Alicja wykonuje pomiar w bazie Bella na swoich dwóch kubitach. Aby wynik jej pomiaru stał się jasny, przepiszemy dwa kubity Alicji w bazie Bella korzystając na następujących ogólnych tożsamości(można je łatwo zweryfikować):
i
Korzystając z tych wyrażeń, po kilku przekształceniach uzyskujemy następującą zależność opisującą stan kwantowy trzech cząstek:
Należy zauważyć, że jak dotąd zmieniono tylko bazę w części systemu kwantowego należącej do Alicji. Żadnej operacji jeszcze nie przeprowadzono i cząsteczki ciągle są w tych samychs tanach. Właściwa teleportacja ma miejsce kiedy Alicja mierzy dwa kubity w bazie Bella. Zgodnie z powyższym wyrażeniem stan kwantowy trzech cząstek może zostać zaobserwowany podczas pomiaru jako jeden ze stanów (wszystkie mają równa szanse na zaistnienie):
Dwie cząstki Alicji są teraz splątane ze sobą, w jednym z czterech stanów Bella. Splątanie między stanami kwantowymi Alicji i Boba została zerwane. Cząstka Boba jest w jednym z układów superpozycji wynikających z przedstawionych powyżej zależności. Należy zauważyć, że kubit Boba, jest teraz w stanie przypominającym ten, który miał zostać teleportowany.
Etapo polegający na lokalnym pomiarze wykonanym przez Alicję w bazie Bella został wykonany i jasne jest co należy zrobuć dalej. Alicja ma teraz pełną wiedzę o stanie trzech cząstek, bo wynik jest pomiaru mówi jej w którym z czterech stanów system sie znajduje. Alicja musi teraz wysłać klasycznym kanałem komunikacji informacje o swoich wynikach do Boba, co wymaga dwóch klasycznych bitów opisujących numer uzyskanego stanu.
[edytuj] Odtworzenie
Bob po odebraniu dwóch klasycznych bitów od Alicji, będzie wiedział, w którym z czterech stanów znajduje się cząsteczka. Korzystając z tych operacji unitarnych na cząsteczce, aby przekształcić jej stan do pożądanego stanu :
- Alicja przekazała wynik , więc Bob wie, że jego kubit jest już we właściwym stanie i nie należy nic robić. Odpowiada unitarnej operacji przyrównania.
- Alicja przekazała wynik , Bob prześle kubit przez unitarną bramkę opisaną macierzą Pauliego:
i odzyska oryginalny stan kwantowy.
- Kiedy Alicja prześle informacje o pomiarze , Bob zastosuje bramkę
na swoim kubicie.
- W ostatnim przypadku odpowiednia bramka jest określona przez zależność
W ten sposób teleportowano stan kwantowy cząstki.
Eksperymentalnie pomiary tego typu mogą zostać wykonane przez Alicję z wykorzystaniem serii impulsów laserowych skierowanych na obie cząstki.
[edytuj] Uwagi
- Po tej operacji, kubit Boba przyjmie stan , a kubit Alicji stanie się nieokreśloną częścią stanu splątanego. Teleportacja nie prowadzi do kopiowania kubitów, więc nie łamie zakazu klonowania.
- Materia lub energia nie została przetransportowana. Cząstki Alicji nie przeniesiono fizycznie do Boba, tylko jej stan kwantowy. Pojęcie teleportacji zostało użyte przez Benneta i innych autorów publikacji z 1993 roku, ponieważ cząsteczki w mechanice kwantowej są nierozróżnialne. Cząstki opisuje wyłącznie ich stan kwantowy, więc jego przeniesienie pozwala na uzyskanie wiernego odwzorowania oryginalnej cząstki.
- Teleportacja łączy komunikację prowadzoną przez kanał kwantowy i klasyczny. Oba są niezbędne, bo usunięcie, któregokolwiek prowadziłoby do paradoksów sprzecznych z albo ze szczególną teorią względności albo z mechaniką kwantową. Usunięcie klasycznego kanału komunikacji prowadziłoby do transmisji informacji z prędkością nadświetlną. Usunięcie kanału kwantowego łamałoby zakaz klasycznej teleportacji, który uniemożliwia przeniesienie stanu splątanego od Alicji do Boba.
- Dla każdego przesłanego kubita, Alicja musi wysłać do Boba dwa klasyczne bity informacji. Tak ja można się spodziewać bity nie niosą pełnej informacji o teleportowanym kubicie. Gdyby Ewa przechwyciła dwa bity nie zdoła odtworzyć stanu kubita, mimo że wie co Bob musi zrobić, aby go odczytać. Ewa nie może w żaden sposób oddziaływać na kubit Boba, bo w ten sposób doprowadzi do dekoherencji splątanego stanu kwantowego.
[edytuj] Alternatywny opis
W literaturze pojawiają się alternatywne opisy teleportacji kwantowej, które są całkowicie równoważne protokołowi opisanemu powyżej. Unitarne operacje, które zmieniają podstawę, na podstawę Bella mogą zostać praktycznie wykonane przez bramki kwantowe. Bezpośrednie obliczenia pozwalają na wyznaczenie braki jako
gdzie H jest jednym kubitem bramki Hadamarda, a CN oznacza bramkę CNOT.
[edytuj] Wymiana splątania
Splątanie można odnieść nie tylko do czystych stanów kwantowych, ale również do stanów mieszanych. Wymiana splątania jest prostą ilustracją tej właściwości układów kwantowych.
Jeżeli Alicja ma cząsteczkę w stanie splątanym z cząstką posiadaną przez Boba, a Bob teleportuje ją do Karoliny, wtedy cząsteczka Alicji będzie splątana z cząsteczką Karoliny.
Cały proces można opisać bardziej symetrycznie w następujący sposób: Alicja ma jedną cząsteczkę, Bob dwie, a Karolina jedną. Cząsteczka Alicji i pierwsza cząsteczka Boba są splątane, a tak samo jak druga cząsteczka Boba i cząsteczka Karoliny:
____________ / \ Pierwsza Druga Alicja-:-:-:-:-:-cząsteczka -:- cząsteczka-:-:-:-:-:-Karolina Boba Boba \____________/
Teraz Bob może zmierzyć stan swoich dwóch cząsteczek w bazie Bella i przesłać wynik do Karoliny klasycznym kanałek komunikacji, tak jak w protokole teleportacji. Mimo, że Alicja i Karolina nigdy nie oddziaływały między sobą, ich cząsteczki są teraz splątane. W efekcie teoretycznie można zbudować kwantowy powielacz, który może zwiększyć zasięg przekazywania kubitów w kryptografii kwantowej. Należy podkreślić, że żaden z opisanych procesów nie prowadzi do kopiowania kubitów, ale zwiększa zasięg na jaki można je przesłać unikając przy tym dekoherencji.
[edytuj] Uogólnienie protokołu teleportacji
Możliwe jest uogólnienie protokołu teleportacji na N stanów cząsteczek, czyli cząsteczek, który stany opisuje N-wymiarowa przestrzeń Hilberta. Kombinacja stanów kwantowych trzech cząsteczek odpowiada N3 wymiarowej przestrzeni stanu. Aby teleportować stan kwantowy, Alicja wykonuje częściowy pomiar stanów dwóch jej cząsteczek dowolnej bazie splątania w N2 wymiarowym podsystemie. Pomiar ten ma N2 równie prawdopodobnych wyników, które muszą zostać przesłane Bobowi klasycznym kanałek komunikcji. Bob odtwarza pożądany stan przesyłając swoje cząsteczki przez odpowiednią bramkę unitarną.
[edytuj] Przypisy
- ↑ C. H. Bennett, G. Brassard, C. Crépeau, R. Jozsa, A. Peres, W. K. Wootters. Teleporting an Unknown Quantum State via Dual Classical and Einstein-Podolsky-Rosen Channels. Phisical Review Letters, 70 1895-1899 (1993).
[edytuj] Literatura
- Opisy teoretyczne:
- G. Brassard, S Braunstein, R Cleve, Teleportation as a Quantum Computation, Physica D 120 43-47 (1998)
- G. Rigolin, Quantum Teleportation of an Arbitrary Two Qubit State and its Relation to Multipartite Entanglement, Phys. Rev. A 71 032303 (2005) (wersja na stronie)
- L. Vaidman, Teleportation of Quantum States, Phys. Rev. A, (1994)
- Pierwsza teleportacja stanu fotonów:
- D. Bouwmeester, J.-W. Pan, K. Mattle, M. Eibl, H. Weinfurter, A. Zeilinger, Experimental Quantum Teleportation, Nature 390, 6660, 575-579 (1997).
- D. Boschi, S. Branca, F. De Martini, L. Hardy, & S. Popescu, Experimental Realization of Teleporting an Unknown Pure Quantum State via Dual classical and Einstein-Podolsky-Rosen channels, Phys. Rev. Lett. 80, 6, 1121-1125 (1998)
- I. Marcikic, H. de Riedmatten, W. Tittel, H. Zbinden, N. Gisin, Long-Distance Teleportation of Qubits at Telecommunication Wavelengths, Nature, 421, 509 (2003)
- R. Ursin et.al., Quantum Teleportation Link across the Danube, Nature 430, 849 (2004)
- Pierwsza teleportacja stanu atomów :
- M. Riebe, H. Häffner, C. F. Roos, W. Hänsel, M. Ruth, J. Benhelm, G. P. T. Lancaster, T. W. Körber, C. Becher, F. Schmidt-Kaler, D. F. V. James, R. Blatt, Deterministic Quantum Teleportation with Atoms, Nature 429, 734-737 (2004)
- M. D. Barrett, J. Chiaverini, T. Schaetz, J. Britton, W. M. Itano, J. D. Jost, E. Knill, C. Langer, D. Leibfried, R. Ozeri, D. J. Wineland, Deterministic Quantum Teleportation of Atomic Qubits, Nature 429, 737
[edytuj] Linki zewnętrzne
- signandsight.com:»Spooky action and beyond« - wywiad z Prof. Dr. Anton Zeilinger o teleportacji kwantowej. Data: 16 grudnia 2006 (ang.)
- Kwantowa teleportacja IBM (ang.)
- Fizykom udało się przesłać informację między materią i światłem (ang.)
- Kantowe klonowanie: Klona kapitana Kirka i podsłuchiwanie (ang.)