Web Analytics

See also ebooksgratis.com: no banners, no cookies, totally FREE.

CLASSICISTRANIERI HOME PAGE - YOUTUBE CHANNEL
Privacy Policy Cookie Policy Terms and Conditions
Transformacja Lorentza - Wikipedia, wolna encyklopedia

Transformacja Lorentza

Z Wikipedii


Transformacje Lorentza to takie przekształcenia przestrzeni Minkowskiego, które zachowują odległości. Odpowiadają one obrotom w przestrzeni euklidesowej. Ich cechą charakterystyczną jest to, że pozostawiają niezmienioną prędkość światła.

W fizyce transformacje Lorentza opisują zależności między współrzędnymi i czasem tego samego zdarzenia w dwóch inercjalnych układach odniesienia wg szczególnej teorii względności. Wg klasycznej mechaniki zależność między czasem i współrzędnymi opisują transformacje Galileusza.

Spis treści

[edytuj] Podejście historyczne

Transformacje Lorentza mają najprostszą postać wówczas, gdy odpowiadające sobie osie współrzędnych kartezjanskich inercjalnych układów odniesienia, nieruchomego K i poruszającego się K', są do siebie wzajemnie równoległe, przy czym układ K' porusza się ze stałą prędkością V (u) wzdłuż osi OX. Jeśli ponadto jako początek odliczania czasu w obu układach (t=0) i (t'=0) wybrany został moment, w którym początki osi współrzędnych O i O' w obu układach pokrywają się, to transformacje Lorentza są w postaci:

x' = γ(xut)
y' = y
z' = z
t' = \gamma \left(t - \frac{u x}{c^{2}} \right)

gdzie

\gamma \equiv \frac{1}{\sqrt{1 - u^2/c^2}}

[edytuj] Podejście nowoczesne

Rozpatrujemy czterowektory, których jedną współrzędną (numerowaną od 0) jest składowa czasowa jakiejś wielkości, a pozostałymi trzema współrzędnymi - klasyczne składowe przestrzenne. W wartościach współrzędnych czterowektorów kryje się wybór konkretnego układu współrzędnych. Aby uzyskać współrzędne interesujących nas wektorów w innym układzie, należy dokonać transformacji (stosujemy konwencję sumacyjną Einsteina):

w^{\alpha'} = \Lambda^{\alpha'}_{\alpha} v^{\alpha}

gdzie:

vα - wektor w oryginalnym układzie współrzędnych
wα' - wektor w nowym układzie współrzędnych
\Lambda^{\alpha'}_{\alpha} - przekształcenie między starym a nowym układem współrzędnych.

Tensorem metrycznym (metryką) przestrzeni Minkowskiego jest macierz 4x4 której składową (0,0) jest -1, pozostałymi składowymi diagonalnymi jest 1, a wszystkimi innymi składowymi - 0. Metrykę oznaczamy literą g. Aby przekształcenie było transformacją Lorentza, musi pozostawiać metrykę niezmienioną, a wyznacznik jego macierzy musi wynosić 1 lub -1.

\Lambda^{\alpha'}_{\alpha} \Lambda^{\beta'}_{\beta} g^{\alpha \beta} = g^{\alpha' \beta'}
|\det(\Lambda^{\alpha'}_{\alpha})| = 1

[edytuj] Podgrupy

Jeżeli zażądamy, żeby wyznacznik macierzy przekształcenia Lorentza był równy dokładnie 1, uzyskamy grupę Lorentza bez odbić przestrzennych.

Przekształcenie Lorentza, którego wszystkie współrzędne z wymiarem czasowym są równe 0, z wyjątkiem elementu diagonalnego, który jest równy 1, nazywamy obrotem.

Przekształcenie Lorentza, którego wszystkie współrzędne bez wymiaru czasowego są równe 0, z wyjątkiem elementów diagnalnych, które są równe 1, nazywamy pchnięciem. Pchnięcie przekształca układ współrzędnych w układ poruszający się względem oryginalnego ze stałą prędkością.

Przekształcenia Lorentza bez przesunięć (translacji), czyli takie, które przekształcają początek układu współrzędnych w samego siebie, nazywane są jednorodnymi przekształceniami Lorentza. Przekształcenia Lorentza rozpatrywane razem z przesunięciami nazywają się niejednorodnymi przekształceniami Lorentza.


[edytuj] Zobacz też

Static Wikipedia (no images)

aa - ab - af - ak - als - am - an - ang - ar - arc - as - ast - av - ay - az - ba - bar - bat_smg - bcl - be - be_x_old - bg - bh - bi - bm - bn - bo - bpy - br - bs - bug - bxr - ca - cbk_zam - cdo - ce - ceb - ch - cho - chr - chy - co - cr - crh - cs - csb - cu - cv - cy - da - de - diq - dsb - dv - dz - ee - el - eml - en - eo - es - et - eu - ext - fa - ff - fi - fiu_vro - fj - fo - fr - frp - fur - fy - ga - gan - gd - gl - glk - gn - got - gu - gv - ha - hak - haw - he - hi - hif - ho - hr - hsb - ht - hu - hy - hz - ia - id - ie - ig - ii - ik - ilo - io - is - it - iu - ja - jbo - jv - ka - kaa - kab - kg - ki - kj - kk - kl - km - kn - ko - kr - ks - ksh - ku - kv - kw - ky - la - lad - lb - lbe - lg - li - lij - lmo - ln - lo - lt - lv - map_bms - mdf - mg - mh - mi - mk - ml - mn - mo - mr - mt - mus - my - myv - mzn - na - nah - nap - nds - nds_nl - ne - new - ng - nl - nn - no - nov - nrm - nv - ny - oc - om - or - os - pa - pag - pam - pap - pdc - pi - pih - pl - pms - ps - pt - qu - quality - rm - rmy - rn - ro - roa_rup - roa_tara - ru - rw - sa - sah - sc - scn - sco - sd - se - sg - sh - si - simple - sk - sl - sm - sn - so - sr - srn - ss - st - stq - su - sv - sw - szl - ta - te - tet - tg - th - ti - tk - tl - tlh - tn - to - tpi - tr - ts - tt - tum - tw - ty - udm - ug - uk - ur - uz - ve - vec - vi - vls - vo - wa - war - wo - wuu - xal - xh - yi - yo - za - zea - zh - zh_classical - zh_min_nan - zh_yue - zu -

Static Wikipedia 2007 (no images)

aa - ab - af - ak - als - am - an - ang - ar - arc - as - ast - av - ay - az - ba - bar - bat_smg - bcl - be - be_x_old - bg - bh - bi - bm - bn - bo - bpy - br - bs - bug - bxr - ca - cbk_zam - cdo - ce - ceb - ch - cho - chr - chy - co - cr - crh - cs - csb - cu - cv - cy - da - de - diq - dsb - dv - dz - ee - el - eml - en - eo - es - et - eu - ext - fa - ff - fi - fiu_vro - fj - fo - fr - frp - fur - fy - ga - gan - gd - gl - glk - gn - got - gu - gv - ha - hak - haw - he - hi - hif - ho - hr - hsb - ht - hu - hy - hz - ia - id - ie - ig - ii - ik - ilo - io - is - it - iu - ja - jbo - jv - ka - kaa - kab - kg - ki - kj - kk - kl - km - kn - ko - kr - ks - ksh - ku - kv - kw - ky - la - lad - lb - lbe - lg - li - lij - lmo - ln - lo - lt - lv - map_bms - mdf - mg - mh - mi - mk - ml - mn - mo - mr - mt - mus - my - myv - mzn - na - nah - nap - nds - nds_nl - ne - new - ng - nl - nn - no - nov - nrm - nv - ny - oc - om - or - os - pa - pag - pam - pap - pdc - pi - pih - pl - pms - ps - pt - qu - quality - rm - rmy - rn - ro - roa_rup - roa_tara - ru - rw - sa - sah - sc - scn - sco - sd - se - sg - sh - si - simple - sk - sl - sm - sn - so - sr - srn - ss - st - stq - su - sv - sw - szl - ta - te - tet - tg - th - ti - tk - tl - tlh - tn - to - tpi - tr - ts - tt - tum - tw - ty - udm - ug - uk - ur - uz - ve - vec - vi - vls - vo - wa - war - wo - wuu - xal - xh - yi - yo - za - zea - zh - zh_classical - zh_min_nan - zh_yue - zu -

Static Wikipedia 2006 (no images)

aa - ab - af - ak - als - am - an - ang - ar - arc - as - ast - av - ay - az - ba - bar - bat_smg - bcl - be - be_x_old - bg - bh - bi - bm - bn - bo - bpy - br - bs - bug - bxr - ca - cbk_zam - cdo - ce - ceb - ch - cho - chr - chy - co - cr - crh - cs - csb - cu - cv - cy - da - de - diq - dsb - dv - dz - ee - el - eml - eo - es - et - eu - ext - fa - ff - fi - fiu_vro - fj - fo - fr - frp - fur - fy - ga - gan - gd - gl - glk - gn - got - gu - gv - ha - hak - haw - he - hi - hif - ho - hr - hsb - ht - hu - hy - hz - ia - id - ie - ig - ii - ik - ilo - io - is - it - iu - ja - jbo - jv - ka - kaa - kab - kg - ki - kj - kk - kl - km - kn - ko - kr - ks - ksh - ku - kv - kw - ky - la - lad - lb - lbe - lg - li - lij - lmo - ln - lo - lt - lv - map_bms - mdf - mg - mh - mi - mk - ml - mn - mo - mr - mt - mus - my - myv - mzn - na - nah - nap - nds - nds_nl - ne - new - ng - nl - nn - no - nov - nrm - nv - ny - oc - om - or - os - pa - pag - pam - pap - pdc - pi - pih - pl - pms - ps - pt - qu - quality - rm - rmy - rn - ro - roa_rup - roa_tara - ru - rw - sa - sah - sc - scn - sco - sd - se - sg - sh - si - simple - sk - sl - sm - sn - so - sr - srn - ss - st - stq - su - sv - sw - szl - ta - te - tet - tg - th - ti - tk - tl - tlh - tn - to - tpi - tr - ts - tt - tum - tw - ty - udm - ug - uk - ur - uz - ve - vec - vi - vls - vo - wa - war - wo - wuu - xal - xh - yi - yo - za - zea - zh - zh_classical - zh_min_nan - zh_yue - zu

Static Wikipedia February 2008 (no images)

aa - ab - af - ak - als - am - an - ang - ar - arc - as - ast - av - ay - az - ba - bar - bat_smg - bcl - be - be_x_old - bg - bh - bi - bm - bn - bo - bpy - br - bs - bug - bxr - ca - cbk_zam - cdo - ce - ceb - ch - cho - chr - chy - co - cr - crh - cs - csb - cu - cv - cy - da - de - diq - dsb - dv - dz - ee - el - eml - en - eo - es - et - eu - ext - fa - ff - fi - fiu_vro - fj - fo - fr - frp - fur - fy - ga - gan - gd - gl - glk - gn - got - gu - gv - ha - hak - haw - he - hi - hif - ho - hr - hsb - ht - hu - hy - hz - ia - id - ie - ig - ii - ik - ilo - io - is - it - iu - ja - jbo - jv - ka - kaa - kab - kg - ki - kj - kk - kl - km - kn - ko - kr - ks - ksh - ku - kv - kw - ky - la - lad - lb - lbe - lg - li - lij - lmo - ln - lo - lt - lv - map_bms - mdf - mg - mh - mi - mk - ml - mn - mo - mr - mt - mus - my - myv - mzn - na - nah - nap - nds - nds_nl - ne - new - ng - nl - nn - no - nov - nrm - nv - ny - oc - om - or - os - pa - pag - pam - pap - pdc - pi - pih - pl - pms - ps - pt - qu - quality - rm - rmy - rn - ro - roa_rup - roa_tara - ru - rw - sa - sah - sc - scn - sco - sd - se - sg - sh - si - simple - sk - sl - sm - sn - so - sr - srn - ss - st - stq - su - sv - sw - szl - ta - te - tet - tg - th - ti - tk - tl - tlh - tn - to - tpi - tr - ts - tt - tum - tw - ty - udm - ug - uk - ur - uz - ve - vec - vi - vls - vo - wa - war - wo - wuu - xal - xh - yi - yo - za - zea - zh - zh_classical - zh_min_nan - zh_yue - zu