Web Analytics

See also ebooksgratis.com: no banners, no cookies, totally FREE.

CLASSICISTRANIERI HOME PAGE - YOUTUBE CHANNEL
Privacy Policy Cookie Policy Terms and Conditions
Własność Baire'a - Wikipedia, wolna encyklopedia

Własność Baire'a

Z Wikipedii

W topologii i teorii mnogości, własność Baire'a jest własnością podzbiorów przestrzeni mówiącą, że w pewnym sensie rozważany zbiór jest regularny.

Spis treści

[edytuj] Definicja

Niech (X,τ) będzie przestrzenią topologiczną. Powiemy, że zbiór A\subseteq X ma własność Baire'a jeśli można go przedstawić jako różnicę symetryczną dwóch zbiorów: otwartego i pierwszej kategorii. Tak więc A\subseteq X ma własność Baire'a wtedy i tylko wtedy gdy istnieją zbiory U,P takie, że U\in\tau, P jest pierwszej kategorii oraz A=U\dot{-}P.

Nazwa tej własności została wprowadzona dla uhonorowania francuskiego matematyka René-Louisa Baire'a.

[edytuj] Przykłady

[edytuj] Własności

  • W dowolnej przestrzeni topologicznej, zbiory o własności Baire'a tworzą σ-ciało podzbiorów tej przestrzeni. Jest to najmniejsze σ-ciało zawierające zarówno zbiory otwarte jak i zbiory pierwszej karegorii.
  • Jeśli podzbiór Z przestrzeni polskiej X ma własność Baire'a, to odpowiednia gra Banacha-Mazura \Game^{\rm BM}(Z) jest zdeterminowana.
  • Polscy matematycy Jan Mycielski i Hugo Steinhaus wykazali, że aksjomat determinacji implikuje że wszystkie podzbiory prostej mają własność Baire'a[1]

[edytuj] Własność Baire'a a mierzalność w sensie Lebesgue'a

Własność Baire jest najczęściej rozważana dla podziorów przestrzeni polskich czy wręcz podzbiorów prostej rzeczywistej. W tym kontekście jest ona często porównywana do mierzalności w sense Lebesgue'a. Matematycy pracujący w teorii mnogości, topologii czy też teorii miary są często zinteresowani odkrywaniem podobieństw jak i przeciwieństw między tymi własnościami.[2][3]

jeśli X,Y są przestrzeniami polskimi i A\subseteq X\times Y jest zbiorem o własności Baire'a,
to A jest zbiorem pierwszej kategorii wtedy i tylko wtedy, gdy zbiór
\big\{x\in X:\{y\in Y:(x,y)\in A\} nie jest pierwszej kategorii w Y\;\big\}
jest pierwszej kategorii w X.

Powyższe twierdzenie jest uważane za topologiczny odpowiednik twierdzenia Fubiniego dla miary.

  • Niech X będzie przestrzenią polską i A\subseteq X. Wówczas można znaleźć zbiór B\subseteq X mający własność Baire'a i taki, że
jeśli C\subseteq B\setminus A ma własność Baire'a, to C jest pierwszej kategorii.

Ten wynik jest często podawany jako topologiczny odpowiednik miary zewnętrznej.

  • model w który wszystkie zbiory rzutowe mają własność Baire'a może być otrzymany bez użycia liczb nieosiągalnych, ale
  • mierzalność zbiorów rzutowych implikuje, że ω1 jest liczbą nieosiagalną w uniwersum zbiorów konstruowalnych (Gödla).

Ten wynik Shelaha był jednym z pierwszych istotnych przykładów asymetrii pomiędzy własnością Baire'a a mierzalnością w sensie Lebesgue'a.

  • Randall Dougherty and Matthew Foreman[7] udowodnili, że jest możliwy paradoksalny rozkład kuli na kawałki które mają własność Baire'a. (Części rozkładu paradoksalnego muszą być niemierzalne.)

[edytuj] Bibliografia

  1. Mycielski, Jan; Steinhaus, H. A mathematical axiom contradicting the axiom of choice. Bull. Acad. Polon. Sci. Sér. Sci. Math. Astronom. Phys. 10 (1962) 1-3
  2. Oxtoby, John C. Measure and category. A survey of the analogies between topological and measure spaces. Second edition. Graduate Texts in Mathematics, 2. Springer-Verlag, New York-Berlin, 1980. x+106 pp. ISBN: 0-387-90508-1
  3. Bartoszyński, Tomek; Judah, Haim. Set theory. On the structure of the real line. A K Peters, Ltd., Wellesley, MA, 1995. xii+546 pp. ISBN: 1-56881-044-X
  4. Kuratowski, Kazimierz; Ulam, Stanisław. Quelques propriétés topologiques du produit combinatoire, "Fundamenta Mathematicae" 19 (1932) 247-251
  5. Solovay, Robert M. A model of set-theory in which every set of reals is Lebesgue measurable. Ann. of Math. 92 (1970) 1-56
  6. Shelah, Saharon. Can you take Solovay's inaccessible away? Israel J. Math. 48 (1984) 1-47
  7. Dougherty, Randall; Foreman, Matthew. Banach-Tarski decompositions using sets with the property of Baire. J. Amer. Math. Soc. 7 (1994), no. 1, 75-124

[edytuj] Zobacz też

W innych językach

Static Wikipedia (no images)

aa - ab - af - ak - als - am - an - ang - ar - arc - as - ast - av - ay - az - ba - bar - bat_smg - bcl - be - be_x_old - bg - bh - bi - bm - bn - bo - bpy - br - bs - bug - bxr - ca - cbk_zam - cdo - ce - ceb - ch - cho - chr - chy - co - cr - crh - cs - csb - cu - cv - cy - da - de - diq - dsb - dv - dz - ee - el - eml - en - eo - es - et - eu - ext - fa - ff - fi - fiu_vro - fj - fo - fr - frp - fur - fy - ga - gan - gd - gl - glk - gn - got - gu - gv - ha - hak - haw - he - hi - hif - ho - hr - hsb - ht - hu - hy - hz - ia - id - ie - ig - ii - ik - ilo - io - is - it - iu - ja - jbo - jv - ka - kaa - kab - kg - ki - kj - kk - kl - km - kn - ko - kr - ks - ksh - ku - kv - kw - ky - la - lad - lb - lbe - lg - li - lij - lmo - ln - lo - lt - lv - map_bms - mdf - mg - mh - mi - mk - ml - mn - mo - mr - mt - mus - my - myv - mzn - na - nah - nap - nds - nds_nl - ne - new - ng - nl - nn - no - nov - nrm - nv - ny - oc - om - or - os - pa - pag - pam - pap - pdc - pi - pih - pl - pms - ps - pt - qu - quality - rm - rmy - rn - ro - roa_rup - roa_tara - ru - rw - sa - sah - sc - scn - sco - sd - se - sg - sh - si - simple - sk - sl - sm - sn - so - sr - srn - ss - st - stq - su - sv - sw - szl - ta - te - tet - tg - th - ti - tk - tl - tlh - tn - to - tpi - tr - ts - tt - tum - tw - ty - udm - ug - uk - ur - uz - ve - vec - vi - vls - vo - wa - war - wo - wuu - xal - xh - yi - yo - za - zea - zh - zh_classical - zh_min_nan - zh_yue - zu -

Static Wikipedia 2007 (no images)

aa - ab - af - ak - als - am - an - ang - ar - arc - as - ast - av - ay - az - ba - bar - bat_smg - bcl - be - be_x_old - bg - bh - bi - bm - bn - bo - bpy - br - bs - bug - bxr - ca - cbk_zam - cdo - ce - ceb - ch - cho - chr - chy - co - cr - crh - cs - csb - cu - cv - cy - da - de - diq - dsb - dv - dz - ee - el - eml - en - eo - es - et - eu - ext - fa - ff - fi - fiu_vro - fj - fo - fr - frp - fur - fy - ga - gan - gd - gl - glk - gn - got - gu - gv - ha - hak - haw - he - hi - hif - ho - hr - hsb - ht - hu - hy - hz - ia - id - ie - ig - ii - ik - ilo - io - is - it - iu - ja - jbo - jv - ka - kaa - kab - kg - ki - kj - kk - kl - km - kn - ko - kr - ks - ksh - ku - kv - kw - ky - la - lad - lb - lbe - lg - li - lij - lmo - ln - lo - lt - lv - map_bms - mdf - mg - mh - mi - mk - ml - mn - mo - mr - mt - mus - my - myv - mzn - na - nah - nap - nds - nds_nl - ne - new - ng - nl - nn - no - nov - nrm - nv - ny - oc - om - or - os - pa - pag - pam - pap - pdc - pi - pih - pl - pms - ps - pt - qu - quality - rm - rmy - rn - ro - roa_rup - roa_tara - ru - rw - sa - sah - sc - scn - sco - sd - se - sg - sh - si - simple - sk - sl - sm - sn - so - sr - srn - ss - st - stq - su - sv - sw - szl - ta - te - tet - tg - th - ti - tk - tl - tlh - tn - to - tpi - tr - ts - tt - tum - tw - ty - udm - ug - uk - ur - uz - ve - vec - vi - vls - vo - wa - war - wo - wuu - xal - xh - yi - yo - za - zea - zh - zh_classical - zh_min_nan - zh_yue - zu -

Static Wikipedia 2006 (no images)

aa - ab - af - ak - als - am - an - ang - ar - arc - as - ast - av - ay - az - ba - bar - bat_smg - bcl - be - be_x_old - bg - bh - bi - bm - bn - bo - bpy - br - bs - bug - bxr - ca - cbk_zam - cdo - ce - ceb - ch - cho - chr - chy - co - cr - crh - cs - csb - cu - cv - cy - da - de - diq - dsb - dv - dz - ee - el - eml - eo - es - et - eu - ext - fa - ff - fi - fiu_vro - fj - fo - fr - frp - fur - fy - ga - gan - gd - gl - glk - gn - got - gu - gv - ha - hak - haw - he - hi - hif - ho - hr - hsb - ht - hu - hy - hz - ia - id - ie - ig - ii - ik - ilo - io - is - it - iu - ja - jbo - jv - ka - kaa - kab - kg - ki - kj - kk - kl - km - kn - ko - kr - ks - ksh - ku - kv - kw - ky - la - lad - lb - lbe - lg - li - lij - lmo - ln - lo - lt - lv - map_bms - mdf - mg - mh - mi - mk - ml - mn - mo - mr - mt - mus - my - myv - mzn - na - nah - nap - nds - nds_nl - ne - new - ng - nl - nn - no - nov - nrm - nv - ny - oc - om - or - os - pa - pag - pam - pap - pdc - pi - pih - pl - pms - ps - pt - qu - quality - rm - rmy - rn - ro - roa_rup - roa_tara - ru - rw - sa - sah - sc - scn - sco - sd - se - sg - sh - si - simple - sk - sl - sm - sn - so - sr - srn - ss - st - stq - su - sv - sw - szl - ta - te - tet - tg - th - ti - tk - tl - tlh - tn - to - tpi - tr - ts - tt - tum - tw - ty - udm - ug - uk - ur - uz - ve - vec - vi - vls - vo - wa - war - wo - wuu - xal - xh - yi - yo - za - zea - zh - zh_classical - zh_min_nan - zh_yue - zu

Static Wikipedia February 2008 (no images)

aa - ab - af - ak - als - am - an - ang - ar - arc - as - ast - av - ay - az - ba - bar - bat_smg - bcl - be - be_x_old - bg - bh - bi - bm - bn - bo - bpy - br - bs - bug - bxr - ca - cbk_zam - cdo - ce - ceb - ch - cho - chr - chy - co - cr - crh - cs - csb - cu - cv - cy - da - de - diq - dsb - dv - dz - ee - el - eml - en - eo - es - et - eu - ext - fa - ff - fi - fiu_vro - fj - fo - fr - frp - fur - fy - ga - gan - gd - gl - glk - gn - got - gu - gv - ha - hak - haw - he - hi - hif - ho - hr - hsb - ht - hu - hy - hz - ia - id - ie - ig - ii - ik - ilo - io - is - it - iu - ja - jbo - jv - ka - kaa - kab - kg - ki - kj - kk - kl - km - kn - ko - kr - ks - ksh - ku - kv - kw - ky - la - lad - lb - lbe - lg - li - lij - lmo - ln - lo - lt - lv - map_bms - mdf - mg - mh - mi - mk - ml - mn - mo - mr - mt - mus - my - myv - mzn - na - nah - nap - nds - nds_nl - ne - new - ng - nl - nn - no - nov - nrm - nv - ny - oc - om - or - os - pa - pag - pam - pap - pdc - pi - pih - pl - pms - ps - pt - qu - quality - rm - rmy - rn - ro - roa_rup - roa_tara - ru - rw - sa - sah - sc - scn - sco - sd - se - sg - sh - si - simple - sk - sl - sm - sn - so - sr - srn - ss - st - stq - su - sv - sw - szl - ta - te - tet - tg - th - ti - tk - tl - tlh - tn - to - tpi - tr - ts - tt - tum - tw - ty - udm - ug - uk - ur - uz - ve - vec - vi - vls - vo - wa - war - wo - wuu - xal - xh - yi - yo - za - zea - zh - zh_classical - zh_min_nan - zh_yue - zu