Gaz
Z Wikipedii
Gaz - stan skupienia materii, w którym ciało fizyczne łatwo zmienia kształt i zajmuje całą dostępną mu przestrzeń. Właściwości te wynikają z własności cząsteczek, które w fazie gazowej mają pełną swobodę ruchu. Wszystkie one cały czas przemieszczają się w przestrzeni zajmowanej przez gaz i nigdy nie zatrzymują się w jednym miejscu. Między cząsteczkami nie występują żadne oddziaływania dalekozasięgowe, a jeśli, to bardzo słabe. Jedyny sposób, w jaki cząsteczki na siebie oddziałują, to zderzenia. Oprócz tego, jeśli gaz jest zamknięty w naczyniu, to jego cząsteczki stale zderzają się ze ściankami tego naczynia, wywierając na nie określone i stałe ciśnienie.
Cząsteczki gazu przemieszczają się z różną szybkością, a rozkład tych szybkości ma charakter całkowicie statystyczny (gaussowski). Średnia szybkość poruszania się cząsteczek w gazie jest zależna wyłącznie od ich masy molowej i temperatury. Podczas obniżania temperatury gazu maleje średnia szybkość cząsteczek, zaś zwiększanie ciśnienia powoduje zmniejszenie średniej odległości między nimi. Obniżanie temperatury lub zwiększanie ciśnienia prowadzi w końcu do skroplenia lub resublimacji gazu. Zamiana gazu w ciecz lub ciało stałe wynika z faktu, że w pewnym momencie energia oddziaływań międzycząsteczkowych (sił van der Waalsa, wiązań wodorowych itp.) staje się większa od energii kinetycznej cieplnego ruchu cząsteczek.
W fizyce przyjmuje się często prosty model gazu doskonałego, w którym cząsteczki gazu nie przyciągają się i nie mają objętości własnej. Teorie i zależności termodynamiczne wywiedzione z założeń gazu doskonałego sprawdzają się dość dobrze (na ogół) w przypadku niezbyt dużych ciśnień oraz temperatur powyżej punktu krytycznego. W innych przypadkach prawa te jednak zawodzą i wtedy stosuje się bardziej złożone modele gazów i tworzy dokładniejsze teorie i zależności (zob. gaz rzeczywisty, równanie van der Waalsa, wirialne równanie stanu).
Interesującą cechą gazu (a ściślej gazu doskonałego) jest to, że objętość przez niego zajmowana (w danej temperaturze i ciśnieniu) jest stała, niezależnie od rodzaju cząsteczek, jakie są w gazie, i zależy wyłącznie od liczby tych cząsteczek. Innymi słowy, jeśli weźmiemy np. 1 litr wodoru i 1 litr tlenu (oba przy tym samym ciśnieniu i temperaturze), to w obu objętościach będzie dokładnie taka sama liczba cząsteczek. Jest to tzw. prawo Avogadra.
Aby jednoznacznie określić stan gazu, poza składem chemicznym (ułamki wagowe lub molowe) i temperaturą należy podać gęstość gazu lub jego ciśnienie. Zamiast gęstości można podać równoważnie objętość molową lub stężenie gazu.
Dla dowolnego gazu:
- objętość jednego mola gazu w warunkach normalnych wynosi: V = 22,4 dm³
- liczność gazu w (liczba moli): n = N/NA = m/M
- stężenie molowe gazu: Cm = n/V
- objętość molowa gazu: Vm = V/n
gdzie: m - masa gazu, V - objętość gazu, N - liczba cząsteczek, NA - liczba Avogadra, M - masa molowa.
Dla gazu doskonałego:
- p = CmRT
- p = ρ(RT/M)
gdzie: R - uniwersalna stała gazowa, T - temperatura.
[edytuj] Zobacz też
- gazy szlachetne
- gazy palne
- gazy techniczne
- gaz wielkopiecowy
- gaz generatorowy
- gaz czadnicowy
- gaz opałowy
- acetylen
- gaz węglowy
- gaz miejski
- gaz ziemny
- gaz błotny
- gazy spalinowe
- gazy bojowe
- gazy trujące
- gazy jelitowe