Problemy Hilberta
Z Wikipedii
Problemy Hilberta to lista 23 zagadnień matematycznych przedstawiona przez Davida Hilberta na Międzynarodowym Kongresie Matematyków w Paryżu w 1900 roku podczas referatu pokazującego stan matematyki na przełomie XIX i XX wieku.
Sam Hilbert prawdopodobnie nie zdawał sobie sprawy z wagi i trudności wielu spośród postawionych przez siebie problemów. Próby ich rozwiązania wpłynęły znacząco na rozwój matematyki w XX wieku.
Obecnie większość problemów Hilberta została rozwiązana, choć niektóre problemy sformułowane są zbyt ogólnie, by można to było jednoznacznie stwierdzić. Do nierozwiązanych wciąż problemów należy m.in. problem numer 8, który zawiera dwie sławne hipotezy dotyczące liczb pierwszych (hipotezę Goldbacha i hipotezę Riemanna).
[edytuj] Lista problemów Hilberta
Nr | Krótki opis | Aktualny status |
---|---|---|
1 | Hipoteza continuum (nie istnieje zbiór o mocy pośredniej pomiędzy mocą zbioru liczb całkowitych i liczb rzeczywistych) | Udowodniono, że hipoteza ta jest niezależna od aksjomatów teorii mnogości – nie można jej ani udowodnić, ani obalić |
2 | Udowodnić niesprzeczność aksjomatów arytmetyki (tzn., że arytmetyka jest systemem formalnym, w którym nie jest możliwy dowód dwóch sprzecznych ze sobą twierdzeń) | Nie ma zgody co do rozstrzygnięcia, mający pomóc w rozwiązaniu problemu program Hilberta został podważony przez twierdzenie Gödla, jednak jest to wciąż przedmiotem debaty |
3 | Czy mając dane dwa czworościany o równej objętości, można zawsze rozłożyć jeden z nich na skończoną liczbę wielościennych części, a następnie złożyć je w drugi? | Rozwiązany przez Maxa Dehna, który podał kontrprzykład |
4 | Problem konstrukcji przestrzeni metrycznych, w których proste stanowią najkrótszą drogę pomiędzy punktami | Problem uznany za zbyt ogólnikowy, choć został rozstrzygnięty dla pewnych szczególnych przypadków |
5 | Czy wszystkie ciągłe grupy są jednocześnie grupami Liego? | Rozwiązany – tak |
6 | Aksjomatyzacja całości fizyki | Problem został uznany za niematematyczny, rozwiązany tylko dla niektórych dziedzin |
7 | Czy liczba a b, gdzie liczba algebraiczna a jest różna od 0 i 1, a b jest niewymierna, jest liczbą przestępną? | Rozwiązany – odpowiedzi pozytywnej udziela twierdzenie Gelfonda |
8 | Hipoteza Riemanna (część rzeczywista każdego nietrywialnego zera funkcji dzeta jest równa ½) i hipoteza Goldbacha (każda liczba parzysta większa od 2 może być wyrażona jako suma dwóch liczb pierwszych) | Problem otwarty |
9 | Dowód uogólnionego prawa wzajemności dla każdego algebraicznego ciała liczbowego | Rozwiązany częściowo |
10 | Przewidzenie rozwiązywalności każdego równania diofantycznego | Rozwiązany – zgodnie z twierdzeniem Matijasiewicza jest to niemożliwe |
11 | Rozwiązywanie form kwadratowych z dowolnymi algebraicznymi współczynnikami liczbowymi | Rozwiązany |
12 | Rozszerzenie twierdzenia Kroneckera-Webera o ciałach abelowych na dowolne algebraiczne ciała liczbowe | Problem otwarty |
13 | Rozwiązywanie wszystkich wielomianów 7 stopnia przy użyciu funkcji dwóch zmiennych | Rozwiązany |
14 | Dowód skończoności konstrukcji pewnych podpierścieni | Rozwiązany |
15 | Ścisłe sformułowanie rachunku Schuberta | Rozwiązany |
16 | Postulat badań nad topologią krzywych i powierzchni algebraicznych | Problem otwarty |
17 | Wyrażenie określonych funkcji rzeczywistych jako ilorazu sum kwadratów | Rozwiązany |
18 | Czy istnieje nieforemny wielościan pozwalający na wypełnienie przestrzeni? Jakie jest najgęstsze upakowanie sfer? | Rozwiązany, ale dowód postulatu Keplera wciąż czeka na powszechną akceptację |
19 | Czy rozwiązania lagranżjanów są zawsze analityczne? | Rozwiązany |
20 | Czy wszystkie zadania rachunku wariacyjnego z określonymi warunkami brzegowymi mają rozwiązania? | Rozwiązany |
21 | Dowód istnienia liniowych równań różniczkowych z przypisanymi grupami monodromii | Rozwiązany |
22 | Uniformizacja relacji analitycznych przy pomocy funkcji automorficznych | Rozwiązany |
23 | Dalszy rozwój rachunku wariacyjnego | Rozwiązany |
[edytuj] Zobacz też
- Problem otwarty
- Problemy Smale'a
- Problemy milenijne